Skip Connections and Multiple Matrices in Recurrent Neural Networks
Mihir Mongia
Abstract

A problem in inferring functions related to sequences is that it is not easy to train recurrent
neural networks to capture long term dependencies. Several partial solutions exist to circumvent
the problem such as LSTM(Long Term Short Term Memory)s and GRU(Gated Recurrent Neural
Networks)s but the jury is still out on what is optimal for real world applications. We experiment
with the use of skip connections similar to Residual Nets. We show that using basic RNNs we
can match the performance of LSTMs. The advantage of this is that LSTMS require much more
computation both in training and testing. We also use different matrices to see if we can improve
performance on language tasks.We however are not able to achieve state of the art on the
Stanford Sentiment Treebank dataset using multiple matrices and/or skip connections.

Introduction

Solving the long term dependency problem is an important issue. One can think of applications
such as predicting DNA sequences where it is possible elements of a sequence 100 apart could
affect the output. Even in language this is a very important problem. A movie review may have
good things to say about a movie and bad things to say about a movie over the course of a
large paragraph. A neural network needs to be able to be able automatically capture whether it
should focus on the long term or short term and it needs to have the capabilities to capture long
term relationships. We know that because of the vanishing gradient problem learning long term
relationships in basic RNNs is difficult. The common weapon to tackle long term dependencies
are LSTMs. LSTMs require a lot of computation but are generally used for most sequential
tasks.

At the same time we also are trying to show that using multiple matrices can be advantageous
in processing natural language tasks. Quite often any RNN will use the same W matrix for each
time step because we want to process all time steps equally. This however does not seem to
capture the fact that there can be more complexity in language than just using one matrix. There
has not been much work on how using multiple matrices might or might not help in natural
language processing. We explore experimentally to see if there are any advantages.

Overall we try to show that skip connections paired with basic RNNs might be a better
alternative to LSTMs for sequential tasks. In addition, we aim to test the hypothesis that using
multiple matrices might help in natural language tasks. To test the power of skip connections,we
first set up a synthetic task that requires realizing long term dependencies and see how adding
skip connections and using multiple matrices helps in performance. We then port over skip
connections and multiple matrices to natural language tasks. We see how we perform on the
Stanford Sentiment Treebank Dataset.

Related Work

Delay networks that give feedback from the output back into the input were first proposed by Lin
et al 1996. This followed from the idea of incorporating delays in feedforward neural networks
(Lang and Hinton, 1988). These type of skip connections however give delays to signal flowing
on the skip connection. In a paper by Microsoft Research Asia "Deep Residual Learning for
Image Recognition", in order to avoid the vanishing gradient problem, the authors add skip
connection skipping every 2 layers to their deep convolutional neural network. In this way the
gradient from the top layer will definitely reach the bottom layer. They are able to report better
generalization error. This as far as we know has not been applied to basic RNNs and it is
possible that the improved generalization error seen in Residual Nets could also could be
paralleled with improved generalization error in Recurrent Neural Networks.

In addition, in nearly all convolutional neural networks at every layer we use different matrices.
The question then arises why do we not do the same in recurrent neural networks. As
mentioned in the Deep Learning Book(Goodfellow,Bengio,Courville) the idea behind using one
Matrix is that at each time step we want to process information the same way. One could argue
that we could rephrase the statement above as processing every two time steps the same way,
or processing every three time steps the same way. This would allow for one to have multiple
matrices as well. Thus we try the same thing

Approach
Below we abstract the type of models we are going to try in order to test the power of skip

connection and multiple matrices. Here are the abstracted models we will try.

Version A: This is an ordinary LSTM or RNN. The W1 is here to demonstrate we only use one
set of matrices. Thus at each time step h(t) = Relu(W1 * h(t-1) + Wx * Input).

W1

Version B: A sequential RNN or LSTM network with alternating sets of matrices. Thus the h(t)
equations alternate for different time steps. The equations alternate between h(t) = Relu(W1

*h(t-1) + Wx * Input) and h(t) = Relu(W2 *h(t-1) + Wx * Input). Note that the matrix interacting
with the input is not changing.

W1 S W2 | .

Version C: A sequential RNN or LSTM network with one set of matrices but skip connections
skipping every two. Thus the equations alternate between the following. First h(t) =
Relu(W1*h(t-1) + Wx*Input). Then h(t) = Relu(W1*h(t-1) + Wx*Input) + h(t-2)

W1 1wt | o

Version D: Two sets of matrices with skip connections over every two blocks. Thus the
equations alternate between the following. First h(t) = Relu(W1*h(t-1) + Wx*Input). Then h(t) =

Relu(W2*h(t-1) + Wx*Input) + h(t-2)

We will of course also have to regularize these while training!

Performance on Synthetic Dataset/Task

Version A: Here we show the performance of the simple RNN network. We are trying to train a a
simple RNN to remember the first element of the first input. For this task | know there is a
perfect solution for the 2 matrix case. Thus | know for sure the neural network has potential to
go to loss equal to zero.

The loss is measured as mean squared error. Each data point is the loss measured for every
batch of data. We cycle through 10000 inputs(length 100 , 6 dimensional vectors) about 10
times. Here we can see the simple RNN is unable to learn the task.

one matrice , test error - nan
12000 ; -

10000}

8000}

6000}

4000 ||

2000

0 20000 20000 60000 B0000 100000

Version B:

Same task and we see that once again a 2 matrix RNN can not learn anything either. In both
version A and version B, the training eventually leads to computational issues and we get NaN
for our test error. One interesting thing to note here there is a step in the graph drastically
decreases to another level. One intuition | have for this behavior is that with 2 matrices there are
more potential solutions that get closer to zero loss. In the 2 matrix case it is more likely as
gradient descent ambles around it is more likely to set into a lower energy state!

S=000 2 matr!ces, test errgr -nan

20000 |

15000}

10000

5000

0 20000 40000 60000 80000 100000

Version C: Same task but we see that the neural network with skip connections is doing very
well in learning the task! Nearly after one epoch we are getting close to zero mean squared
error. In addition there were no difficulties with this network giving NaN values. It is possible that
skip connections have less exploding gradients!

e one matrtce slklp conqectlnn 2 test error 15

12000

10000

8000

6000

4000

2000

0 {53 e O
0] 10000 20000 30000 40000 50000 60000 70000 800DD

Version D: Skip connections with two matrices and we can learn the task fast again! Here we
also see the test error is a bit better than the one matrix case.

SHbutaD : two rrljatrlces.l skip 2. Iengthllﬂu, ttlest errqr .035]

8000000
7000000
6000000
5000000
4000000
3000000
2000000

1000000

0
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Special Version: Here Just for the sake of fun we tried train a recurrent neural network with 4
matrices and a skip connection that stretches every four time steps. We trained on an input
sequence that is length 500 long! Here we are able to get to .00366 test error. This is amazing!
Here once again | hypothesize it is able to do this because there are many 4 matrix solutions
that get close to zero error.

dMatricesSkipdLength5005equence-test emor 00366

23000

#0000 G0000 8000 190000

Thus overall skip connections are doing well on a synthetic task. Here we show a few graphs of
results from the Stanford Sentiment Tree Bank Dataset one fine grained testing (i.e. 5 way
classification).

Results for Basic RNNs

—— TrainError

—— TestError

—— TrainError
—— TestError

v

—— TrainError
— TestError

—— TrainError
— TestError

Overall we see here that skip connections for RNNs on the Stanford Sentiment Tree Bank are
helping quite a bit. There is not however much difference between the two matrix case and the
one matrix case. In addition regularization did not seem to help much.

Results for LSTMS

—— TrainError
—— TestError

—— TrainError
— TestError

~

0.9 One Matrices no skip Connection Validation 30%

—— TrainError

0.8 /\;Jr \/ — TestError
i

/
/

05 /_/

//x__r"
0.4 7
N/ / STt |
_/—/__._/WJ__
0.2 _ﬂ
0.1 -
0 5 10 15 20 25 30 35 40

1.0 Two Matrices no skip Connection Validation 30%

—— TrainError
09 —— TestError

.-'——\/
08|
o /\/\/\f‘,

0.6}

0.5

0.4}

.

0.1

In these results we can see that skip connections are not helping LSTMS peform better. What is
interesting however is that RNNs paired with skip connections are performing better than
LSTMs paired with skip connections. This however could be a bug in the code. LSTMS are
usually able to get better performance on the Stanford Sentiment Tree Bank Dataset. | could not
figure out why my LSTMs were not performing up to par.

Conclusion

There is no clear conclusion. It is clear that skip connections can be very useful in learning
longer term tasks. It is clear that they even help on natural language processing problems. What
is unclear however is how using multiple matrices is helping the problem. In some sense using
one matrix is a good regularizer. It might be the case that using 2 Matrices creates some type of
overfitting issues. My experiments also suggest that sometimes using RNNs with skip
connections are equally as good or better than LSTMS. Since RNNs use less computation than
LSTMs it can often be quite advantageous to just use RNNs if issues like memory and speed
are a concern. This could definitely be the case in something like mobile computing.

References
1) Deep Residual Learning for Image Recognition, Kaiming Hi et al., 2015
2) Deep Learning Book, lan Goodfellow, Yoshua Bengio, Aaron Courville

3) Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996). Learning long-term dependencies is not as
difficult with NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6),
1329-1338

4) Lin, Y., Liu, Z,, Sun, M., Liu, Y., and Zhu, X. (2015). Learning entity and relation embeddings for
knowledge graph completion. In Proc. AAAI'15 .

5) Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank Richard Socher

et al

