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Abstract

We investigate learning language models of individual movie characters. We train
a recurrent neural net based model on a large dataset of movie scripts with no
character specificity to learn a general dialogue model first. Then, we transfer
the parameters from this pretrained model to initialize another model and learn a
character specific model from a single show. We measure the performance by us-
ing perplexity on the general model and relative change in perplexity by switching
out character models for the character specific model. Our results suggest that it
is possible to learn and evaluate character specific language models.

1 Introduction

Learning language models of individuals can be useful in a number of applications, such as, cre-
ating chatbots with distinct and tunable personalities or styles, automatic evaluation of new movie
scripts for consistency of characters, discovering similar characters in different settings, or automatic
generation of conversations. In this work we investigate learning language models for individual
characters in movies (we use the word “character” to refer to movie characters unless otherwise
stated).

There is extensive prior work on learning language models, and it is important in a number of classi-
cal applications, such as machine translation and speech recognition. Learning language models of
characters is challenging because of the limited data on conversations. We approach this problem by
learning a general movie dialogue language model from a dataset containing many movies (total of
25,339,337 tokens) then transferring model parameters into another model in which language mod-
els for characters are uniquely defined. We demonstrate results by learning from the show South
Park, in which main characters have only tens of thousands of words (Cartman: 61k, Stan: 35k,
Kyle:31k). In a regular movie the amount of data per character is much more limited hence we
picked to work with TV shows. Although we present results on one TV show, the technique we
developed can be extended to any show or movie with dialogues.

Specifically, we train a recurrent neural net based model on a dataset containing dialogs from 2496
movies to learn a general model and optimize the performance of this model. Then, we use the
learned parameters to initialize a model that has a unique projection layer for each character in the
show and use only the data from the show to learn from. Finally we generate sentences using each
characters unique projection layer when the model is conditioned on an input sentence. The model
can also be used to generate synthetic conversations between characters.

We review the prior art in language modeling, conversation generation and transfer learning in sec-
tion@ In SectionE]we provide details about the model we use, and details about the data we used to
train our model, and also present the criteria used in choosing data. In Section[d] we provide exper-
imental results and present details on the hyperparameter selection and tuning process, discuss the
evaluation of transfer learning, and quantify the performance of language models of characters. We
also provide example sentences that were generated by our model in the same section. We conclude
by summarizing the results and providing some future directions for the work in Section 3]



2 Background and Related Work

There has been extensive work and research on language models. Building on previous work we
also employ a Recurrent Neural Net (RNN) based model to tackle this problem based on its success
in language modeling as reported in [11]]. In addition, we investigate powerful recurrent models
such as LSTMs (Long Short Term Memory) [14] and GRUs (Gated Recurrent Units)[S[][[LO] for this
task. Different than the prior art, our work focuses on learning unique character models instead of a
general language model.

More recently there has been work in modeling conversations using sequence to sequence techniques
[15.[17]). Our work utilizes a very similar model as discussed in Section [3] although we use a much
more modestly sized model due to limitations in resources, but we add character specificity. As
mentioned in [17], although the model performs well on generating conversations there is a lack
of consistency and personality. In this work we contribute to the literature by focusing on adding
personalities, utilizing different projection layers for each character while retraining the recurrent
layer throughout the whole conversation. Although not specifically addressed in our work, the lack
of consistency in the conversations can possibly be addressed by using attention based models [[7]]
and will be topic of future research.

We also investigated using parameters transferred from a previously trained model to learn on a
different model that captures unique characters. Transfer learning allows a model to perform better
than starting from scratch by transferring the knowledge that was learned previously [16]]. This has
been an active area of research in deep neural nets due to the promise of eliminating the need of
retraining from scratch each time. We employ a similar technique in our work and we use a model
that has been trained on a large dataset of movies and shows, and transfer those learned parameters
into a new model when we are learning language models of individual characters. As discussed in
Section 4] this saves significant time in training the character specific model.

3 Approach

We approach solving the problem of learning character specific language models in multiple stages:

1. We learn a general language model of dialogues using a movie script dataset to train a
recurrent neural network. This model uses a single projection layer and learning does not
account for utterances from different characters but rather learns a general conversational
model.

2. We transfer the parameters from the general model and train on specific characters by
using data from a movie/show that contains the characters of interest. This model utilizes a
separate set of projection parameters for each character. Having a base model allows us to
train on specific characters of specific shows without having to retrain on the whole dataset.

3. We use the resulting character specific model to evaluate the language model differences
between movie characters by calculating perplexity obtained on a specific characters lines
and swapping the character specific projection layer. We also use the model to generate
sample utterences conditioned on the previous line.

In this section we discuss the details of the model and dataset that we used in each stage.

3.1 Model

We start by learning a general dialogue language model, then use the learned parameters as initial
conditions for learning a fine tune the language model for individual characters. The options and
decisions that were made about the model are summarized in this section, and in Section[d] the results
supporting these decision are presented.

A language model computes a probability of seeing a series of words together: P(wq,...,wr) =
Hij P(w;|wy, ...,w;—1) [12]]. If we restrict the model to the last n word we can approximate the

i=T i=T
language model as [[:—; P(w;ilwy,...,wi—1) = [[iZ] P(wilw;—(n_1),-.-s wi—1)

We use the intrinsic measure of perplexity to evaluate the model. The perplexity is given by:
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PP(W) = P(w1,wy, ..., wN)~ (1)
Perplexity in our code was implemented by calculating the mean of the cross-entropy loss and ex-
ponentiating it as this gives the same results.

We used pre-trained 100 dimensional GloVe word vectors [13] and allowed backpropagation into
the word embedding during training (freezing the layer and random initialization were also tried).
Model uses a recurrent neural network with a single 100 dimensional hidden layer GRU cell (LSTM
and basic RNN cells were also investigated) and we used a step size of 35 for backpropagating in
time (steps sizes 10-45 were evaluated). A projection layer is used with a softmax layer to predict
the next word (§ = softmax(Uh + b), where U is the projection matrix, h is the hidden vector for
RNN cell, b is the projection bias). A cross-entropy loss with one hot encoding for the target word

(CE(y,9) = — ZLVl yilogy; - where |V| is the vocabulary size) was used during training.

A single projection layer is used while learning a general dialogue model. To learn the character
specific language model the parameters except the projection layer (which are the word vectors and
GRU parameters) are transferred to another model in which there is a unique projection layer for
each character. For example if we had 2 characters in the movie, A and B, we would have two
unique sets of projection matrices (U4 and Up) and biases (b4 and bp) in this new model. Such
a modular model allows us to leverage a pre-trained model to learn on a new movie or show with
limited data. Specifically, we investigated the hypothesis that we can capture the character language
model by learning different projection parameters for individual characters. The model we employ
is illustrated in Figure[T]
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Figure 1: Model used for our experiments for learning a character specific language model. Input
words are vectorized using a pre-trained word embedding and the resulting word vectors are fed
into a RNN CELL (GRU cell was used). The output word is predicted though the softmax of the
projection layer, which is unique to each character. Learning of the unique projection layer is done
after transferring parameters from a model that was used to learn from a much larger dataset. A
special token <eos> is used to indicate the end of a characters line in the dialogue. A character can
utter any number of sentences in their line.

Having a separate projection layer for each character makes our model modular and allows us to
transfer weights from a general model. The base model has a single projection unit which learns
from conversations without character specialization. Once that model is trained, we can use the
parameters to train on specific movies and shows. This eliminates the need to train on the whole
conversational dataset all over again, and we limit the dataset only to the movie we are interested.



3.2 Data

The dataset was taken from IMSDB [3] which contained 25,339,337 tokens. We denoted the end
of the characters dialogue with an <eos> token. Each line can consist of multiple sentences. We
picked the dataset because it was the largest available with desired features as discussed below.

The computational complexity of the model is dominated by the number of vocabulary words and
the size of the hidden layer (V' x H). Thus we decreased the size of the vocabulary by eliminating
the tokens that were less than a certain frequency (10 was used in our case) and reduced the size to
34852 unique tokens.

In order to learn individual characters we chose a TV show that had maximal amount of conver-
sations within a relatively few characters. Hence, shows such as Friends [1]] and South Park [5]
were good candidates because of the length of the shows and consistent main characters that yields
high conversation/character. We decided to run our experiments on South Park and learn the lan-
guage models of the 8 main characters (Cartman, Stan, Kyle, Randy, Butters, Garrison, Chef, others
grouped in one).

We also studied the word size of each characters lines in the training dataset for the general language
model and the South Park dataset, to ensure that the general language model learned was from a
close enough dataset. Figure 2a]shows the histogram of the number of tokens in a dialogue for the
training, validation and test sets for the general model for movies. We see very similar statistics on
the three sets as expected from a well split data set. Figure[2b]shows a comparison of the histograms
for the training set of the general model and the South Park dataset. We also observe a very similar
distribution, although South Park dataset is skewed towards having more conversations with fewer
tokens. We went with the assumption that the agreement in the distribution of the datasets is similar
enough. We also observe that few characters dominate the conversations (Cartman 16.4%, Stan
9.4%, Kyle 8.4%, Randy 4.1%).
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Figure 2: Frequency of the number of token for a dialog in the data sets used in various tasks.
(a) Data used to train a general language model - Training Data: 25,339,337 tokens, Validation
Data: 3,299,922 tokens, Test Data: 3,143,628 tokens. (b) Data used for learning language models of
specific characters in South Park, General dataset: 25,339,337 tokens, South Park dataset: 1,071,136
tokens

4 Experiments

In this section we present data justifying some of the decisions made on the model parameters and
the results we obtained on transfer learning and also comparing the language models of characters.
Tensorflow [6] was used for implementing the model and most experiments were run on a GPU
machine on an Amazon Web Services EC2 instance or on a 4 CPU Intel Xeon machine.



4.1 Model and Hyperparameter Optimization

As shown in the model Figure [I] the RNN cell is a parameter that we have control over and we
experimented with using RNN cells, GRU cells and LSTM cells. In past work [9] we have observed
that GRU cells perform better than RNN cells, so we focused on GRU and LSTM models on the full
dataset. We also experimented with one versus two hidden layers. The results we got indicated that
GRU cells performed better than LSTM cells, although this may have been simply due to the lack
of proper LSTM tuning. We did pay special attention to tuning, specifically to the forget gate bias
and set it to 1 [10], but did not get improved performance. After picking GRU as the RNN cell we
also ran a test case with a 2 hidden layer model, however saw an increase in perplexity.

To improve the performance of our model we used pretrained GloVe vectors [4] (glove6B.zip). We
chose to use the 100 dimensional embedding after experimenting with 50 and 300. We compared
3 different scenarios on a smaller dataset: - Use the embedding with no changes during training
- use the embedding with allowing backpropagation into it and - initialize the word embedding to
a random value. We verified the expected result that using pre-trained word vectors with tuning
gave the best results. This is expected because back propagation into the embedding will tune the
embedding to the specific dataset used. Figure [3a]shows the comparison of these cases.

We also experimented with the number of steps to be used for back-propagation in time as shown in
Figure[3b] We plotted the text perplexity for each model after training them for 3 epochs on the full
dataset and saw that the perplexity leveled off after 35 steps.

Final set of hyperparamets used for the model are presented in Table
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Figure 3: Model and hyperparameter optimization

Table 1: Summary of the hyperparameters chosen for the model

RNN Cell GRU
Hidden Layers 1
Step Size 35
Batch Size 64
Word Vector Size 100
Hidden Size 100
Dropout 0.9
Optimizer Adam
Learning Rate 0.01




4.2 Transfer Learning

We investigated supplementing the lack of data on individual characters by training on a larger
dataset and transferring the parameters over [[18]]. Literature shows that with no fine tuning (freezing
parameters) degrades the performance because simply removing parameters disturbs the co-adapted
features. We also observe a similar behavior in which fine-tuning (ability to back-propagate into the
parameters) is needed to improve the accuracy of the system as shown in Figure [da]

It is not feasible to learn the character specific model with the full dataset, because addition of each
character increases the training time linearly as shown in hence transferring over the weights
results in significant savings in training time.
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Figure 4: (a) Comparing different initializations using a single projection layer, evaluating the effect
of transfer learning by training on the smaller single show dataset. M1: Transferred the parameters
and allowed the model to back propagate, M2: Used a smaller network to prevent overfitting on the
smaller dataset M3: Transferred the parameter and froze all layer except the projection layer, M4:
Used the same network on the smaller dataset with no transfer (b) Training time per epoch of the
model as a function of number of unique characters in the model (on AWS GPU EC2) for South
Park dataset only.

4.3 Comparing Language Models of Characters

In order to evaluate the character specific language model we ran the model by substituting projec-
tion layers of characters with another characters layer and tabulating the change in in perplexity (we
expect an increase in perplexity). In Tables 2 and[3] for each character in the first column, we let the
model run through the show script but substitute another character language model that is located
in the first row. For example, in Tables (23), [Row = Cartman, Column = Stan] = (100.86, 80.26)
corresponds to the perplexity of the overall model when the language model for Stan is used instead
of Cartman’s while running the character based model (which result in Stan’s projection layer being
used for Cartman’s lines). Table[2]had a base test perplexity 126.71 and the validation perplexity is
given in the table. This model was trained only on South Park data with no parameter transfer. Table
[3| was trained again only on South Park data, but this time initialized with pre-trained parameters
from the full data. We observe that although the baseline numbers improve, the comparative power
of the model for evaluating different characters does not become better. We also observe that as the
total number of training data gets smaller for the character it becomes harder to distinguish it from
other models. Although we get meaningful differentiation between the models of these characters,
there is a clear skew caused by the size of the training data, and fixing this is a part of future work.

4.4 Dialogue Generation

Using our character specific model we generate lines by conditioning the model with an input. The
input line is fed into the model to condition the model without monitoring the output. Output line
is generated token by token (a token can be a word or punctuation), where the output at each time



Table 2: Validation perplexity on character specific language models after swapping the projection
layer of the chacter in the first column with the one in the first row. This model did not use any
transfer learning.

Cartman Stan Kyle Randy Butters Garrison Chef

Cartman | 9634 10086 10129 | 10474 | 10520 |JEEESEN EIEEN
Stan 96.70 96.34 97.15 99.99 10202 | 10542 = 10465
Kyle 96.20 96.58 96.34 99.30 100.58 10386  102.98
Randy 96.07 96.63 96.59 96.34 97.40 99.05 98.37
Butters 96.01 96.75 96.95 97.39 96.34 99.38 99.41
Garrison | 96.13 96.20 96.17 96.30 96.31 96.34 96.44
Chef 95.87 96.18 96.12 96.42 96.93 97.27 96.34

Table 3: Validation perplexity on character specific language models after swapping the projection
layer of the chacter in the first column with the one in the first row. With transfer learning.

Cartman Stan Kyle Randy Butters Garrison Chef

Cartman 77.35 80.26 80.26 82.25 82.73 --
Stan 77.75 77.35 77.89 79.74 80.95 83.43 82.32
Kyle 77.36 77.42 77.35 79.21 79.84 82.24 81.29
Randy 77.28 77.56 77.61 77.35 77.98 79.11 78.49
Butters 77.26 77.70 77.85 78.05 77.35 79.55 79.15
Garrison 77.21 77.25 77.23 77.34 77.33 77.35 77.42
Chef 77.15 77.32 77.31 77.48 77.81 77.99 77.35

step is fed in as the input of the next step until the special token indicating the end of a characters
line <eos>> is reached. The output is obtained by sampling from the multinomial distribution where
the probability of each word is defined as the softmax output of the model [2]. There is also a
temperature parameter (logits/Temperature) used to shape the distribution, so with T = 1 we get
the standard distribution and with lower temperatures we can give higher importance to the higher
probabilities.

Table 4: Output of each character to a specific input at different sampling temperatures

INPUT 1am not sure what is happening . this is not cool ! <eos>
Character T=0.1 T=028 T=10
it billy has gone drank your leg . you know the
hundred times up to my name song . by the
impossible official jefferson bleeds like science . to
Cartman you guys ! <eos> be ';laying people Li'ied . he ’s been around my life . hey kyle . <eos>
but maybe i can believe it ... we ’re just sick and next
unresolved . <eos>
Stan you guys ! <eos> stop ! <eos> it ’s not ! <eos>
how are come going on with this thing ? ! i won’t
Kyle you ’re not gon na get your ass ! <eos> everyone stop it | <eos> tr);l,tto “%:; : (;:1: 1‘:2;;:‘??52 i?egvultnlll‘t le:l:(jx(::iei;:o
you have a <unk> ed ? <eos>
Randy you ’re not gon na go ! <eos> thats the gove:\l]r:;r:;;; l.nzr;e:;nce cure our for stanley , i knew how we got that beer . <eos>
i *m not gon na be a little , and i ’m not gon na be a o oh ... why ? oh that ’s a little nice , dad . did ya, i..
Butters . i it is not wendy . <eos> turn <unk> out by <unk>>, all to the shitis a
little <unk> . <eos> 5 .
great nice new night . <eos>

Generating utterences at a low temperature reflects similar perplexities seen for Cartman, Kyle and
Stan as the lines generated are very similar. Table @] shows a table of the sentences generated by
characters at various temperatures for comparison. The generated sentences qualitatively reflect
the results observed with the character level perplexity comparison (rest of the characters were not
included in the table because of space limitations, results shown are representative)

5 Conclusion

In conclusion, we demonstrated the feasibility of learning a character specific language model using
recurrent neural nets and showed that it can be used to differentiate between language models of
characters. We also confirmed the hypothesis that using large datasets to learn a general model



and transferring these parameters to learn from a smaller set improves the perplexity on character
language models. Such a modular approach allows for rapidly learning from new movies without
retraining on the full movie dataset.

There are a number of improvement to be made as a part of future work to increase the performance
of the model. Although the model was able to differentiate between language models of characters
the difference was not very sharp and for characters with fewer lines the performance degraded and
this bias will need to be fixed. We also used a relatively modest sized network compared to the
conversational model reported in the literature, we believe that with more computational resources,
time and better tuning, the performance can be improved substantially. Also, using sequence to
sequence models with attention will possibly improve the performance. It would also be interesting
to experiment on TV shows/movies with less dialogue data and investigate the effect of the dataset
size after transfer learning.
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