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Abstract

We explore the use of a bi-directional gated recurrent unit (GRU) network for sentiment analysis of
Twitter data directed at U.S airlines. The performance of the GRU is then compared with a con-
volutional neural network (CNN) and also the comparatively simpler vanilla single layer network.
We wish to not only identify which model has the highest test accuracy, but also its precision, recall
rates as well as its robustness to unbalanced classes in the training set. We also discuss the common
practice of re-weighting data for unbalanced classes and its effect on a model’s prediction from a
Bayesian viewpoint. Indeed, as it turns out, there is a balance to be found between using local infor-
mation, that is information contained in each tweet and global information, the information present
in the entire training set or test set when making predictions. We also implement a Long Short Term
Memory (LSTM) network for text generation of some positive or negative airline tweets and the
relatively coherent text demonstrate the power of these networks.

1 Introduction

In recent years, Twitter has become the de facto online customer service platform. Thus, a company’s image on Twitter
is of central importance and this is especially true for the airline industry given that many tweets are travel related in
nature. Indeed, for the airline industry, research has shown that responding to tweets has revenue generating potential,
drives higher satisfaction than other customer service channels, and perhaps most importantly, satisfied Twitter users
spread the word. In this project, we wish to give airlines a quick snapshot of their image on twitter based on the
sentiment of tweets sent to them. Our goal is to classify each tweet into three classes; negative, neutral and positive.
The dataset we use contain 14,605 real tweets directed at various US airlines such as United, Virgin America and
American Airlines. We train our own word vector through a skip-gram model, initializing with exiting GloVe model
by Socher et al. (2014). Then we feed our tweets into a bi-directional GRU, tweet by tweet, where each tweet is
concatenated from its individual word vectors. We also try some tree based parser on our trained word vectors in
addition to simple concatenation. The performance of the GRU model is then compared to that of a model where
each tweet’s prediction in the test set cannot influence one another, for example, a CNN or RNN where the inputs are
word vectors instead. Previous approaches has mostly relied on word clustering and using the corresponding word
frequency as features for prediction. We improve on this by capturing context, providing higher accuracy.

2 Related Work

Our work draws from three areas of NLP, sentiment analysis, semantic vector spaces and deep learning. Twitter
user’s frequent use of emoticons, abbreviations and slang require custom trained word vectors. Emoticons can contain
powerful emotions, and indeed sentiment analysis on Twitter data often use custom dictionaries linking emoticons
and slang to word vectors (Agarwal et al. 2011). Indeed, GloVe models for twitter data needs to be custom trained





(Pennington et al. 2014) and it is this model that we initialize our own embedding matrix with. As we soon see,
without training our own word vectors, we cannot achieve a very high accuracy. Recent advances in deep learning
with compositional models such as recursive neural networks (RNN) (Socher et al., 2011b), matrix-vector RNNs
(Socher et al., 2012) help us to capture context and takes advantage of the nested hierarchy present in many sentiment
tasks. The advent of parse trees for combining word vectors into phrases is of great use to us, as this allows us to make
a network where tweets can influence each other (Chen and Manning, 2014). The model we use is a bi-directional
gated recurrent unit network (Cho et al. 2014; Chung et al. 2014), which uses a gating unit for controlling flow from
pairs of recurrent layers. An LSTM (Hochreiter and Schmidhuber 1997) model is used for tweet generation, and we
find that the gate units used to control error flow leads to impressive generation abilities. The unbalanced classes in our
training set can be thought of in the framework of compound decision theory (Robbins 1956), and is closely related to
empirical Bayesian theory also pioneered by Robbins.

3 Technical Approach and Models

The first task revolves on training our word vectors. We first do minimal preprocessing of the data, such as making
words case-insensitive and removing repeated punctuation. Afterwards, we initialize our embedding matrix and GloVe
model for twitter data, and let this embedding matrix update itself as our GRU model run. We also train a skip-gram
model for our word vectors but either way, we let our embedding change through the training of the network.

3.1 Single Layer Baseline

We implement a single layer neural network as a baseline first. Here, we train our own word vectors using skip-gram
and these word vector stays fixed throughout, unlike the GRU network. The precise equations are
h = o(xW; + by),§ = softmax(hWs + bs).

3.2 Bi-directional GRU

Once we have an embedding, our main approach will be a bi-directional GRU where we concate-
nate the words of a tweet into one word vector. Placeholders are added as necessary to ensure
that all tweets have a common length. Specifically, the equations for this network is as follows.
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where x;_; denote input, r;_1 is reset gate, z;_; is the update gate, h;_; is the reset memory,
and h; is the new memory.

Observe that by feeding a tweet into each x, we allow each batch of tweets to influence
each other’s prediction, an idea that may seem counterintuitive at first because each tweet
is assumed to be independent from one another. However, our data is sorted in a way such
that tweets common to an airline are batched together, that is the first 1000 tweets may all
be directed at Virgin America, the next 1500 at American Airlines and so on. Due to this
structure, we are motivated to use a network with bi-directional flow. As we will explore
later, this is part of a larger framework in empirical Bayes theory, where global information
can be of help to local prediction, even if each sample is assumed to be independent of one
another.

3.3 Convolutional Neural Network
Figure 2: A GRU net-

Similar to our baseline, CNN also does not change its embedding matrix once initialized. work on a low level
We train our word vector in the same way as before. Our convolutional neural network

has two convolutional layers, one fully connected layer and two pooling layers to make the

dimensions match. The equations for CNN is as follows, along with a diagram courtesy of TensorBoard.
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where each x;, i € {1,2,...,n} is the vector of each word, x1.,, denotes the concatenation of the first n word vectors,
w and b are the parameters of filters which have the inner product with the corpus of training data. After the final
softmax function, we get the probability of each class and use cross entropy to train the network. Note that unlike the
previous GRU, the input to our CNN are word vectors, and each prediction is made independent of one another, and
the connection between layers is contained within each tweet.

3.4 LSTM for Text Generation

Finally, we also implement a LSTM to generate text.  This method selects the most probable word
each time, depending on which class we are in. The following equations govern our training.
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Figure 3: The LSTM model



where z;, ¢, hy, by denotes the update gate, reset gate, reset memory and new memory respectively. The following is
areal tweet generated by our model and we give its process below.

< start > — hy = (p1.p2, ..., pv| — Definitely! — hy = (p1.pa, ..., p|v| — Customer — hz = (p1.p2, ..., pjv| — for
— hy = (p1.p2, ..., Dv| — ever! =< end >

4 Experiments and Findings

We judge our classification models by overall accuracy, precision, recall and F1 scores. All of our models are trained
using cross entropy loss. Before doing so, we first digress into a discussion about our dataset.

4.1 Data

Our dataset consists of 14605 real tweets directed at various US airlines. Each tweet is given a label; negative, neutral
or positive manually assigned by a human. Since travel related tweets are generally salty in nature, most tweets are
negative. We split our dataset into a training set and test set by randomly picking 10% of tweets from our dataset to be
the test set. Previous approaches to our problem has primarily focused on word clustering, where each word is assigned
a polarity score and the word frequencies are then used as features. The picture below illustrates the unbalanced nature
of our training set and also the word clouds that these previous approach are based on. These methods fail to capture
context and as such is often limited to polarizing key words like ’cancelled”, ”delayed” for negative sentiment and
”thanks” or ”awesome” for positive sentiments.

4.2 Results with Unbalanced Data

The result of the GRU and CNN model is summarized in the table below.

Unbalanced Data
Model Overall Accuracy True Positive True Negative F1
2-Layers GRU 0.735 0.615 0.847 0.69
3-Layers GRU 0.744 0.533 0.864 0.64
CNN (Ir = 0.01) 0.648 0 0.81 NaN
CNN (Ir=0.1) 0.601 0.06 0.91 0.106
Shﬁ%&ﬁier 0.62 0 0.97 NaN

Observe that the 3-Layer GRU has the highest accuracy in the test set, but its true positive rate is much lower than
the 2-Layer GRU and as such has a lower F1 score. As our GRU model becomes more complex, it picks up the prior
information that the majority of tweets are negative in nature and uses this knowledge to improve its negative class
prediction, while ignoring the positive class. We see that the CNN and one layer neural network take this strategy to a
new extreme, heavily biasing the majority class. The reader may conclude that the GRU is more robust to unbalanced
data than the CNN, but this is also due to our model architecture. Recall that the inputs to the GRU are tweets or
concatenated word vectors, and so the model makes decision globally, while the inputs to the CNN are word vectors,
and so the model makes decision one at a time. The latter tend to escalate the effect of the negative prior, since it has
no knowledge about its other predictions. In fact, because our GRU makes its decision globally, the distribution of its
predictions closely matches that of the training set.



4.3 Results with Balanced Data

The result of the GRU, CNN and vanilla single layer model is summarized below. Unsurprisingly, they are much
better than the unbalanced version. We balanced our data by adding a small amount of Gaussian noise to each positive
sample, to bring up the number of positive and neutral tweets to comparable numbers of negative tweet. This method
is identical to giving positive or neutral samples more weight in the training step.

Balanced Data
Model Overall Accuracy True Positive True Negative F1
2-Layers GRU 0.83 0.77 0.89 0.78
3-Layers GRU 0.88 0.79 0.97 0.83
CNN (Ir = 0.01) 0.74 0.72 0.76 0.73
CNN (Ir=0.1) 0.73 0.71 0.75 0.72
Siﬁm” 0.68 0.66 0.72 0.67

The improvement comes from a stronger reliance on local information. Balanced data makes the prior uninformative,
which helps CNN and one layer network to make a better prediction. Nonetheless, GRU is still the best model but this
time, the 3-Layer GRU wins on both overall accuracy and F1 score. Recall that for the unbalanced case, the 3-Layer
GRU also achieved a higher accuracy, but gained its accuracy biasing its prediction to the majority class and thus,
losing to the 2-Layer GRU on F1 score. But here, it is better both in overall accuracy and F1 score because the prior
is now uninformative and so it’s fitting on local information, or the actual tweet itself. We see that GRU still beat
out traditional CNN, indicating that global information is still informative, and subsumes more than a simple prior
distribution of classes.

4.4 Text Generation

Below are some samples of generated text by our LSTM.

Generated Tweets

Positive Sentiment Negative Sentiment

Definitely! Customer for ever! Seriously! Unacceptable!
Landed is got and #JetBlue strong 1 still in sucks #patheric
Excellent it only first ever! Sfull lie maybe coma

5 A Bayesian approach to unbalanced training classes

The following example from empirical bayesian statistics give an example of how global decisions can perform better
than local decisions, even under independence assumptions.



5.1 Coin tossing example

Suppose there are two type of coins c4, cp with P(H) = % and P(H) = % respectively. If you observe the outcome
of one toss, and wish to guess which type of coin was tossed, it’s clear that the optimal decision is to guess c4 if we
observe H and cp if we observe T'. This incurs an error of 1/3.

Now suppose we repeat this N times, where each toss is independent of one another. One may guess that the same
local strategy above is optimal, but this is not so. Let us now dispel this notion.

Let € be the unknown proportion of c4 coins and let § be the fraction of observed heads. For large N, we have
§ ~e(2/3)+(1—¢)(1/3) = (1 +¢€)/3soe =35 — 1. Thus, if § < 4/9, then with high probability, ¢ < 1/3.
Hence, a global decision to guess ¢ coin for every coin incurs an error of £ < 1/3, smaller than the 1/3 error incurred
by local decisions. Similarly, if 6 > 5/9, then with high probability, ¢ > 2/3 and so a global decision to guess all
ca coins incur an error of 1 — & < 1/3. If the proportion of heads is 4/9 < § < 5/9 then the optimal decision is
the local decision as discussed above. Thus, with global decisions taken into account, the error we incur is actually
min{1/3,¢,1 — ¢} and for some &, this can be a major improvement over local decisions.

5.2 Unbalanced training classes and global decisions

Models such as CNN and RNN often overwhelmingly predict the majority class if the training set is sufficiently
unbalanced. One common way to rectify this situation is to increase the weight of the minority class, but such strategy
seem to violate one of the most fundamental assumptions of statistics, that we train and test on the same distribution.
Neural networks however, are seemingly immune to this gross violation and the authors suspect this is due to its many
parameters and its complex nature. This suggest that models like CNN and RNN relies heavily on local information
to do well, and indeed rebalancing data essentially eliminate the information contained in the global prior . This
makes intuitive sense since when someone says ‘I am mad”, the sentiment should be clear from this information
alone without relying on what this person has said before. Nonetheless, taking into account of global information can
help our predictions, perhaps if the person is known to say ‘I am mad” very often, one may change this to a neutral
sentiment. In an extreme case, global information can completely override local information, as demonstrated by the
coin tossing example above and our CNN on unbalanced data. Usually though, there is a balance to be found and
in our dataset, global information subsumes correlation between airlines, time and other features that humans cannot
pick out which the GRU model may have used in obtaining its high accuracy.

6 Conclusion and Future Directions

We have implemented a bi-directional GRU, CNN and a single layer network for our airline sentiment analysis.
Our results show that bi-directional GRU perform the best and this is most likely due to a combination of the forget
gates as well as the global nature in which the data were fed. We found that CNN and single layer network requires
balanced data to perform well, and that they tend to make local decisions, ideal for a predicting streams of data.
Compared to our GRU, the accuracy and F1 score are both lower even in both balanced and unbalanced cases so it is
clear that the bi-directional GRU is the optimal model for this dataset. One interesting aspect is that for unbalanced
data, a 2-Layer GRU has a higher F1 score than a 3-Layer GRU because a 3-Layer GRU will encourage the model
to focus on the majority class, leading to a higher accuracy but lower F1 score due to its neglect for the minority
class. With balanced data however, the 3-Layer GRU wins outright. We have also established the networks behavior
when trained on balanced and unbalanced data. The GRU are more robust to an unbalanced training set due to its
global predictions, but CNN and RNN tend to choose the global prior over its local information, causing it to favor
the majority class. Once the training set is balanced, the results are much better and more sophisticated models lead
to better results despite violating a key assumption in statistics of training and testing on the same distribution. We
cannot however, conclude that global information is useless, as indicated by the superior performance of GRU, and
rush to balance every dataset we have, but instead, shows a need for our network to adequately use both type of
information without over-reliance on either one. On the other hand, local information reliance is what makes CNN so
adaptable to many different techniques where we could very well, be training and testing on different distributions.

Our aim was to provide airlines a quick snapshot of their image on twitter. A natural next step is to automati-
cally filter tweet for airlines that require a response. Airlines such as Southwest has replied to some customer’s urgent
tweets in 2 minutes or less, often garnering praise and we wish to help them do more of that by automatically deciding
which tweets are important and in need of a response.
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